铁书网

字:
关灯 护眼
铁书网 > 重生之AI教父 > 162. 网络的重参数化

162. 网络的重参数化

旦分析出错,出现了误判,那是必撞无疑,肯定会发生车辆事故,一头创死在上面。

    马斯克激进的技术策略和喜好导致了一个问题,那就是人工智能算法要做的事情太多了。

    想要完全弃用传感器,那四面八方都得安装车载摄像头才行,才能保证前后左右都看得清楚。

    此外,还有一个重要的事情,那就是距离的估计。

    对于人类来说,根据一张图片去判断其中距离的远近,实在太过容易,可这对人工智能视觉算法来说,不是一件容易的事情。

    以现在的技术条件,需要进行非常复杂的标注,去分析样例图片中各个部位和像素的距离远近。

    因为图片毕竟是2d平面的,而自动驾驶是一个需要掌握好空间距离的任务。

    通过大量不同角度的平面图片,来重构一个三维的空间,甚至鸟瞰视角的三维空间是必要的。

    不过现在这还只是空中楼阁,马斯克再次联系孟繁岐的来意非常简单,就是希望这个作为骨干的神经网络可以再快一点,或者计算量再小一点。

    否则以目前的情况看,特斯拉很难负担得起这个运算量。

    实际上,马斯克没有对这件事情抱有特别大的希望。在他看来,孟繁岐上次给出的方案已经好到非常离谱了。

    在这个大家才刚开始复现dreamnet,还没把残差的原理和一些变种搞明白的时间点,孟繁岐已经针对各种不同平台的其他运算设备,做了相当多的实验。

    从而通过优化算子结构,调整特定计算过程的方式,将这个核心的骨干网络参数量减少了接近十倍。

    运算快了这么多,性能却没什么变化,这已经非常不得了了。

    马斯克有这一问,也是私下里的随口一提。

    但他名头太大,以往自己做的事情又太疯狂,导致孟繁岐听着他那颇为低沉,有磁性的声音之时,当了真。

    还真以为这是个非常严肃认真的需求。

    “自动驾驶的热度确实也快起来了,我专门针对这方面做点优化工作,也不算亏。”

   &n>> --
『加入书签,方便阅读』
内容有问题?点击>>>邮件反馈
热门推荐
修仙从返老还童开始科技:行星终点天下长宁山海传说我家米缸通古今,我来暴富你颠覆江山重生之都市学生